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Abstract—A new FPGA implementation for adaptive median
filters is proposed. Adaptive median filters exhibit better filtering
properties than standard median filters; however, their imple-
mentation cost is higher. Proposed architecture was optimized for
throughput allowing 300M pixels to be filtered per second. The
best performance/cost ratio exhibits the adaptive median filter
which utilizes filtering window 7x7 pixels and can suppress shot
noise with intensity up to 60%. In addition to filtering, adaptive
median filters can be also used as detectors of corrupted pixels
(detection statistics).

I. INTRODUCTION

In past years, linear filters became the most popular filters

in image signal processing. The reason of their popularity is

caused by the existence of robust mathematical models which

can be used for their analysis and design. However, there exist

many areas in which the nonlinear filters provide significantly

better results. The advantage of nonlinear filters lies in their

ability to preserve edges and suppress the noise without loss

of details. The success of nonlinear filters is caused by the fact

that image signals as well as existing noise types are usually

nonlinear.

Due to the imperfections of image sensors, images are often

corrupted by noise. The impulse noise is the most frequently

referred type of noise. In most cases, impulse noise is caused

by malfunctioning pixels in camera sensors, faulty memory

locations in hardware, or errors in the data transmission. We

distinguish two common types of impulse noise; the salt-

and-pepper noise (commonly referred to as intensity spikes

or speckle) and the random-valued shot noise. For images

corrupted by salt-and-pepper noise, the noisy pixels can take

only the maximum or minimum values. In case of the random-

valued shot noise, the noisy pixels have an arbitrary value. It

is very difficult to remove this type of noise using linear filters

because they tend to smudge resulting images.

Traditionally, the impulse noise is removed by a median

filter which is the most popular nonlinear filter. Its hardware

implementation is straightforward and does not require many

resources. However, the standard median filter gives a poor

performance for images corrupted by impulse noise with

higher intensity. A simple median utilizing 3×3 or 5×5-pixel

window is sufficient only when the noise intensity is less than

approx. 10-20%. When the intensity of noise is increasing, a

simple median filter remains many shots unfiltered. Thus more

advanced techniques have to be utilized. In order to overcome

this shortage, various approaches were proposed in the recent

years (see a survey of the methods, e.g. in [1]). Among the

most known techniques we can include: switching median

filters [2], weighted median filters [3], weighted order statistic

filters [4] and adaptive median filters [5]. Apart from median

filters, some better algorithms exist (e.g.[6]). However, because

they do not use the concept of a small filtering window, their

hardware implementations do not bring any benefits for a

reasonable cost.

Almost all alternatives to median filters have already been

implemented in hardware [7], [8], [9], [10], [11], [12]. There

is one exception, adaptive median filter, whose efficient

hardware implementation will be described in this paper. In

comparison with other approaches, the adaptive median filter

provides significantly better results (in terms of visual quality

of filtered images) especially for images corrupted with high

noise intensity [5]. The main advantage of the adaptive median

filter is that it modifies only corrupted pixels. Standard median

filters modify almost all pixels of the image. In addition to

filtering, adaptive median filters can be also used as detectors

of corrupted pixels (detection statistics) [13], [6].

This paper deals with a highly pipeline hardware realization

of the adaptive median filter which is optimized for high

throughput. Proposed solution is implemented in an FPGA

and its performance is compared against various filters on a

set of test images. The goal is to provide a filter suitable for

a high performance real-time processing of images corrupted

by shot noise of various intensities.

II. SLIDING WINDOW FUNCTION

As spatial filters operate with pixel values in the neigh-

borhood of the center pixel (so-called filter or observation

window), it is necessary to implement a local neighborhood

function (sometimes referred to as a sliding window function).

This function is applied independently on all pixel locations

and is typically invariable for all locations (i.e. spatially

invariant).

Figure 1 shows the most common hardware architecture of

the sliding window function that uses the row buffers. This

approach assumes that one image pixel is read from memory in
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Fig. 1. Implementation of a 3 × 3 filter window. Row buffers are used to
reduce the memory access to one pixel per clock cycle.

one clock cycle. The pixels are read row by row. When buffers

are filled (which is done with a fixed latency), this architecture

provides the access to the entire pixel neighborhood every

clock cycle.

While the architecture places the lowest demand on external

memory bandwidth, the highest demand is placed on internal

memory bandwidth. Because modern FPGA devices contain

large amount of embedded memory, this approach does not

cause problems.

The length of the shift registers depends on the width of the

input image. In order to implement a sliding window, several

image rows have to be stored. The number of rows corresponds

to the window size. Another approach is to choose a fixed row

length and divide the input image into strips. However, this

method leads to decreasing of the performance due to data

overlapping (when compared to the usage of full-length row

buffers).

If the embedded memory is not available, it is necessary

to access the external memory for more than one pixel in

one clock cycle. This approach can be efficient only for small

window sizes. Hence, it is rarely used in high performance

image processing.

As the cost of buffers implementation depends on the size

of the input image and as the buffers have to be implemented

for every window-based spatial filter, we will not consider

this implementation cost in the comparisons which will be

performed in Section VI.

III. K-TH ORDER STATISTIC FILTERS

Existing architectures of median filters can be divided into

three classes [14]: array-based architectures, stack filter-based

architectures, and sorting network-based architectures.

The array architectures use a large number of simple pro-

cessors arranged into a systolic linear array. Each processor

processes one value of the filter window. Even if the processors

can be pipelined and can provide high throughput, this archi-

tecture is not suitable for manipulating with large windows.

Unfortunately, large windows are typical for adaptive median

filters.

The most efficient approach is based on stack filters. A stack

filter uses a transformation of process of filtration into the

binary domain. This transformation uses a threshold decompo-

sition. Processing in the binary domain is very efficient and can

be easily parallelized. The main disadvantage of this approach

is the requirement for a high number of decomposition levels

which depends exponentially on the number of bits used to

represent each pixel. On the other hand, in the serial bitwise

version, the stack filters usually allow the most area efficient

implementation [11].

Sorting networks-based architectures implement the rank

order filters. The samples of observed filter window are sorted

by a sorting network (SN). Then, the value in the middle of

sorted sequence represents the median value. As the sorting

network can be easily pipelined, the approach provides the best

performance. There exist different types of sorting networks.

We will use SNs based on the bitonic sort and Batcher’s odd-

even merge sort. These algorithms differ in the implementation

cost.

The most popular filtering techniques developed to suppress

impulse noise in images operate on the ordered values within

the observation window. This approach is known as order

statistic filtration and will be introduced in the following

paragraphs.

A. Order statistic filters

Consider a sequence {x1, x2, . . . , xN} = {xi}, 1 ≤ i ≤ N
that consists of N elements generated by a random variable

X . Let {xi} be arranged in ascending order so that

x(1) ≤ x(2) ≤ . . . ≤ x(k) ≤ . . . ≤ x(N−1) ≤ x(N).

Then, element x(k) = S(k){xi} is so-called k-th order statis-

tic. Note that element x(1) corresponds to the minimum of

the observed sequence and x(N) to the maximum. In case that

k = (N + 1)/2, where N is odd, x(k) is the median of the

given sequence.

Let M be the length of the filter window, M = 2L+1, and

{xi} is the input sequence, 1 ≤ i ≤ N and N ≥ M . Then the

filter defined by specifying its output yj (j = L+1, . . . , N−L)

as

yj = S(k){xj−L, . . . , xj+L}

is denoted as the k-th order statistic filter (OSF). It is obvious

that if the k = (N + 1)/2 then the k-th order statistic filter

defines the standard median filter.

So-called weighted OSF [14] assigns a weight to every

element of the observation window. This generalization allows

the usage of some elements of window more than once. On

contrary, some elements need not to be included into the

process of filtration.

As each pixel of a given image can be treated as a random

variable, statistic order filter can be used for the filtration of

the images. However, in this case we need a two dimensional

variant of statistic filter which can be obtained as an extension

of the one-dimensional case mentioned above. Instead of one-

dimensional observed sequence {xi}, we have to consider a

two-dimensional matrix [xi,j ]. Each element of this matrix

corresponds to one pixel of observed input image. Similarly,
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Fig. 2. Filtration using a two dimensional 6th order statistic filter (a 3 × 3

filter window is used)

the output of the filter is a two-dimensional matrix [yi,j ] (see

Figure 2). Note that the two-dimensional statistic order filter

does not have to use every element of the rectangular filtering

window.

B. Sorting networks

The concept of sorting networks was introduced by Knuth

[15]. Sorting network is defined as a network of elementary

operations denoted as compare&swap elements (sometimes

called comparators) that sorts all input sequences. A com-

pare&swap (CS) of two elements (a, b) compares a and b and

exchanges (if it is necessary) the elements in order to obtain

sorted sequence. A sequence of compare&swap operations

depends only on the number of elements to be sorted, not on

the values of the elements. The main advantage of the sorting

network is that the sequence of comparisons is fixed. Thus

it is suitable for parallel processing and pipelined hardware

implementation. In hardware, CS is implemented using two

multiplexers that are controlled by means of a comparator that

determines the maximum of the two.

The sorting network can be constructed using a sorting

algorithm which must be data independent (i.e. the sequence

of CS components must not depend on the input values).

The number of CS components and latency are two crucial

parameters of any sorting network. By latency we mean the

minimum number of groups of compare&swap components

that must be executed sequentially. Chosen sorting algorithm

influences the number of required CS components. Hence,

we used two sorting algorithms which are able to provide

low number of CS components: bitonic sorter and Batcher’s

odd-even merge sorter. When used to implement median

circuits, these algorithms provide solutions with the same

latency. However, these solutions differ in the number of CS

components and registers. Note that some additional registers

have to be included into the design in order to allow the

pipeline processing.

The bitonic sorter [16] is developed on the basis of the 0-1

principle [15]. It is based on merging of two so-called bitonic

sequences. A 0-1-sequence is called bitonic if it contains at

most two changes between 0 and 1. The main idea is to

recursively divide the input sequence into several parts. In

each part, bitonic sequences are created and subsequently

merged in order to create 1) another larger bitonic sequence

and 2) sorted sequence. After all merging tasks, the sequence

is sorted. Structure of the 9-input sorting network created using

the bitonic sorter is depicted in Figure 3.
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Fig. 3. Structure of 9-input sorting network (bitonic sorting network). Each
vertical line represents one compare&swap operation. The arrow determines
the position of maximum of the two inputs.

Similarly, the Batcher’s odd-even merge sort [16] algorithm

is based on sorting of two halves of the input sequence. The

sorting is followed by merging of two shorter sequences into

the larger sorted sequence. The input sequence is recursively

spitted into sequences of odd and even elements.

Table I contains the number of compare&swap compo-

nents, the number of registers (REG) and the latency (delay)

of the median filters obtained by various approaches. The

implementation cost of the optimal median circuits is also

included. However, the optimal median implementation is

known only for some problem instances. As we can see, the

odd-even merge sort produces more efficient implementations

in comparison with the bitonic sorter.

TABLE I
COST OF HARDWARE IMPLEMENTATION OF VARIOUS MEDIAN CIRCUITS

# optimal bitonic SN oemerge SN

inputs CS REG delay CS REG delay CS REG delay

3 3 2 3 3 2 3 3 2 3
5 7 4 5 9 5 5 8 5 5
7 13 10 7 18 4 6 14 5 6
9 19 15 9 28 12 8 22 14 8

25 99 121 24 153 58 15 113 70 15
49 - - - 427 155 21 313 203 21
81 - - - 876 439 28 661 541 28

It is obvious that we can implement standard as well as

weighted OSF of an arbitrary order using of an appropriate

sorting network. In fact, particular SN computes all orders of

OSF in parallel. This property will be utilized in proposed

adaptive median filter implementation.

IV. ADAPTIVE MEDIAN FILTER

The adaptive median filter (AMF) can be defined in several

ways [17], [5]. We will use the definition based on the order

statistic. In this sense, AMF can be considered as iterative

order statistic filter. The iterative processing was introduced

in order to detect and replace corrupted pixels only. In each

iteration, filtering windows of different sizes are utilized.

In order to simplify the description, we will deal only

with one filter window located at position (u, v). Let a two-

dimensional matrix [xi,j ] describe the input image and W is



the size of the filtered window. Let the sequence [wk,l] be the

output of a local neighborhood function which contains just

N = W × W samples of filter window located at position

(u, v) (assume that W is odd). Let xuv denote the value of

pixel xu,v which corresponds to the value of a pixel at position

(u, v) of the input image. Let yuv be the output of the AMF

located at position (u, v). The algorithm of AMF is as follows:

Step 1 Initialization

Start with the smallest windows size W = 3. Let

the maximum window size be Wmax (again, an odd

number).

Step 2 Computation of order statistic

Let xmin = S(0)([wk,l]) be the output of the 0-

th order statistic filter. xmax = S(N)([wk,l]) is the

output of the N -th order statistic filter and xmed =
S((N+1)/2)([wk,l]) is the output of the median filter.

Step 3 Evaluation of the terminating condition

If the condition xmin < xmed < xmax is satisfied

then the processing ends with the computation of the

output value which is defined as follows: If xmin <
xuv < xmax then the pixel is not corrupted by noise

and the output value is the value of the original

pixel, i.e. yuv = xuv . If xmin < xuv < xmax is

not satisfied then the output value is the median of

the window, i.e. yuv = xmed. If the condition is not

satisfied then the computation continues.

Step 4 Increasing of the window size

If the condition xmin < xmed < xmax is not

satisfies, it can be interpreted as follows. If many

pixels have the same value then it is impossible to

determine (with the current window size) whether

the pixels are corrupted with high intensity noise or

whether it is the constant area with all pixels of the

same color. This is the reason why the window size

has to be increased.

If the window W is smaller than Wmax, increase

the size of the window, i.e. W = W + 2, and

repeat the computation from step 2. If the size of

the window W reaches the maximum value Wmax,

the processing ends and the output value is defined

as yuv = xmed.

V. PROPOSED ARCHITECTURE

A. Non-recursive adaptive median filter

Although the adaptive median filter is defined as an iterative

filter, the result can be computed in a two-step process. The

idea is to implement a set of sorting networks of different

number of inputs (from 3 × 3 to Wmax ×Wmax). The min-

imum, maximum and median value of each sorting network

is utilized. As these sorting networks have different latencies

it is necessary to include registers at suitable positions to

synchronize the computation. In the second step, the outputs

of sorting networks are combined together using a simple

combination logic (Figure 5).

outputs 
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sorting network 3x3

sorting network Wmax x Wmax

sorting network 5x5

buffer

output
pixel

SN9_latency
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Fig. 5. Hardware implementation of the adaptive median filter

B. Recursive adaptive median filter

The implementation cost can be reduced if only one

Wmax × Wmax-input sorting network is used. This sorting

network is used iteratively for all filtering windows. It is

necessary to ensure that unused inputs are initialized to cor-

rectly calculate the minimum, maximum and median value

for each filtering window. Immediate results have to be stored

to registers. However, the throughput of this solution is three

times lower (in case that Wmax = 7) in comparison to a non-

recursive implementation.

VI. RESULTS OF SYNTHESIS

The median filters as well as adaptive median filters were

described in VHDL, simulated using ModelSim and synthe-

sized using Xilinx ISE tools to Virtex II Pro XC2vp50-7

FPGA. The implementation costs is expressed in terms of

slices. Our FPGA contains 23616 slices in total.

Table II provides the results of synthesis of median circuits

for various windows sizes and various architectures. The

results corresponds with the costs given in Table I. The odd-

even merge sort-based implementations require fewer slices in

comparison with the bitonic sorter-based implementation.

Median filters are implemented as pipeline circuits with the

maximal degree of parallelism. The solutions can achieve the

throughput of 300M calculated medians (i.e. processed filter

windows) per second. When we consider an image containing

1024× 1024 pixels, the proposed architecture is able to filter

approx. 280 images per second.

TABLE II
RESULTS OF SYNTHESIS OF COMMON MEDIAN FILTERS

Number of slices
# inputs optimal bitonic SN oe-merge SN max. freq.

9 (3x3) 268 297 289 305 MHz
25 (5x5) 1506 1706 1582 305 MHz
49 (7x7) unknown 4815 4426 303 MHz
81 (9x9) unknown 10315 9719 302 MHz

Results of synthesis of the proposed adaptive median filter

are summarized in Table III. Adaptive median filter with

filtering window 7x7 exhibits a very good performance/cost

ratio in comparison to standard median filters. This filter

occupies approx. 30% of the chip and is able to remove

noise up to 60% intensity. As the design of AMF is pipelined
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Fig. 4. Comparison of various image filters using a set of 25 test images corrupted by salt-and-pepper noise of intensity 5-75%.

and without iterations, it provides the same performance

as standard median filters (i.e. 300M processed pixels per

second).

TABLE III
RESULTS OF SYNTHESIS OF PROPOSED ADAPTIVE MEDIAN FILTER

SN bitonic SN oe-merge Latency
Wmax # slices max. freq # slices max. freq [delay]

5x5 2220 305 MHz 2024 303 MHz 15
7x7 7297 302 MHz 6567 298 MHz 21
9x9 18120 302 MHz 16395 298 MHz 28

VII. EVALUATION OF FILTERING PROPERTIES

Filtering properties of adaptive median filters (with filtering

windows 5x5, 7x7 and 9x9) and standard median filters (with

filtering windows 3x3, 5x5 and 7x7) were compared on 25 test

images. All images were corrupted by salt-and-pepper noise

of intensity 5-75%. The results were also compared the best

known software solutions [18] which utilizes filtering windows

of unlimited size. Figure 4 summarizes obtained results. The

visual quality of filtered images is numerically expressed by

the peak signal-to-noise ratio (PSNR) which is calculated as

PSNR = 10 log10

2552

1
MN

∑
i,j(v[i, j]− w[i, j])2

where N×M is the size of image, v denotes the filtered image

and w denotes the original image.

Increasing the size of filtering window allows the standard

median filter to improve the PSNR; however, this approach

fails when the noise intensity is higher that approx. 10-20%.

Because the standard median filters modify almost all pixels,

images become smudged and detail less. Adaptive median

filters work correctly also for lower noise intensities because

they try to use the smallest possible window and so modify

only corrupted pixels. The size of filtering window influences

the quality of filtering when noise is of more than 40%

intensity. Figure 6 give examples of images filtered using

different filters.

(a) Image corrupted by 15% impulse noise (b) Image corrupted by 50% impulse noise

(c) Median filter 5× 5 (d) Median filter 5× 5

(e) Adaptive median filter 7× 7 (f) Adaptive median filter 7× 7

Fig. 6. Filtration of images corrupted by impulse noise with a low intensity
(left column) and a high intensity (right column).

VIII. CONCLUSIONS

In this paper, a new FPGA implementation for adaptive

median filters was proposed. Adaptive median filters exhibit

better filtering properties than standard median filters; how-

ever, their implementation cost is higher. Proposed architecture

was optimized for throughput allowing 300M pixels to be

filtered per second. The best performance/cost ratio exhibits

the adaptive median filter which utilizes filtering window 7x7

pixels and can suppress shot noise with intensity up to 60%.
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